
AD-A137 320 A DISTRIBUTED OPERATING SYSTEM DESIGN AND i/
DICTIONARY/DIRECTORY FOR THE ST..(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA N F SCHNEIDEWIND ET AL. NOV 83

UNCLASSIFIED NPS54-83-015 F/G 9/2 NL

EEIIMEEEIIEEhIIIhIhIIIEII
IIIIIIIIIEEEI
IEIhEEEEEIIII
IIIIIIIIIIIIII
IIIIEEEEIIIEI
EEEELI _

11111 i.o~ 2

"-2 116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-9%3-A

F0

Report Number - NPS54-83-015

C" NAVAL POSTGRADUATE SCHOOL
Monterey, California

JAN 2 71984

A DISTRIBUTED OPERATING SYSTEM DESIGN AND
DICTIONARY/DIRECTOY FOR THE STOCK POINT

LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT

Norman F. Schneidevind
Daniel R. Dolk

November 1983

Final Report: 1 December 82 to 1 November 83

Approved for public release; distribution unlimited

Prepared for:
Fleet Material Support Office
Mechanicsburg, Pennsylvania

84 Ol 27 030

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Comdore R.. HI. Shumaker David R.. Schrady
Superintendent Provost

The work reported herein was supported by the Fleet Material Support Office.

Reproduction of all or part of this report Is authorized.

This report was prepared by:

HOEW F - -CHIIZDEWDANIE1L K. DOLK, Assistant Professor
Professor of Computer Science of Management Information Systems

Reviewed by: Released by:

319D SNKLSTEr, Cara irLIK . TOLLES
Department of Ameinistrative Sciences Dean of Research

MSCUINV CLASSIFICATION Oor ThS PAgg Isbm Sao &me _______________

2"AD 9uSTRUCTbOMREPOR CUMETAT PAGE a0m COMPLETG PORN
I. IPORT NUM6rN IL i3' ACC SSMON WO: UCIPICMTS CATALOG MU-INGE-

MPs4-83-015 lAb f-1Ii 3,2o_
4. TITLE (a4 Su4U.) S. Tyvpl O rE PO1%T a PaNOo COVERO

A DISTRIBUTED OPERATING SYSTEM DESIGN AND Final Report
DICTIONARY/DIRECTORY FOR THE STOCK POINT 1 1W4 R7 % 1 Un q R

LOGISTICS INTEGRATED COHIUNICATIONS ENVIRONMENT S. PIEFORIMO One. REPORT MUmmllN

7. AHON(4) a. CONTRACT O R ANT N e la)

Norman F. Schneidevind
Daniel R. Dolk

-. 09R OP 601111 i14i iiA M A H A O . P M

Naval Postgraduate School NOO36783PM3883
Monterey, California. 93940

II. CONTROLLINO OFFICE NAME AMO AOoRESS It. REPORT OATE

November 1983
Fleet Material Support Office IS. MUMBER OF PAGES
4Iehaiefhuw'. P.naylan4s _______7_______

14. iGueYTOwMOAGENCY NAME06 AOOREWII dug...,. &W Cea lMalld Om") IL SECURITY CLASS. (e tis ree)

Unclassified
Ile. : ASSIFMPICATIONI 061NGRAOIMG

Sl. CISTRIGUTION STATEMENT (of ti aspen)

Approved for public release; distribution unlimited.

17. OCMSTl9UTIOM STATEMENT (of Me sablerd enled lC toe . t IO dMereat be. Ah11t4)

' tl1. SUPPLE.MENTARY NOTESr

19. KIM woR= (CentMo . on "Wer. side, it *aam..v wed Idernfy by 6ah amher)

Local Computer Networks, Distributed Computer Systems, Operating System
Design, Dictionary/Directory Systems

:6ABSTRACT (C.eo... n wev... site it m,.e.., and ,,f Sp 66h uA
The problems and opportunities involved with designing and using distributed
system8 are discussed. This is followed by presenting a paradigm for the
distributed system design process. The paradigm is then applied to the
design of a distributed operating system for SPLICE. The major interface
between user and operating system is provided by the dictionary/directory
system.

D oD 1473 6CATIOor IP MOV asI is 01101.11'O AN" Unclassified
S/N 0102. Lee 014 ,. 01 WUWV r.,,I Io, 0, %N 1e4 59=1 40 64

:ii

TABLE OF CONTENTS

Page number

*INTRODUCTION 1

OTHE CHALLENGE OF DISTRIBUTED SYSTEMS2

OSYSTEM ENTITIES

ODISTRIBUTED SYSTEM PARADIGM 5

ODISTRIBUTED SYSTEM DESIGN STRATEGY 30

OFUNCTIONAL MODULES 31.

ONETWORK OPERATING SYSTEM DESIGN 36

*OPERATING SYSTEM DESIGN OBJECTIVES 37

°INTERPROCESS COMMUNICATION 40

* SCHEDULING 42

ODEADLOCK PREVENTION 44

EMO RY (RAM) MANAGEMENT 46

OSHARED RESOURCES AND THE CRITICAL SECTION PROBLEM 48

OUSER INTERFACE SPECIFICATIONS 53

-User calls 53

-Justification for SPLICE Dictionary/Directory System (DDS) 54

-Scope of DDS 56

-Contents and Logical Structure of DDS 58

-Distribution of the DDS 64

-Environmental Dependency 67

OCOMPUTER ARCHITECTURE 69

*CONCLUSIONS AND RECOMMENDATIONS 71

*REFERENCES 76

V

LIST OF FIGURES

Page number

1. Initial representation of objects in a system 9

2. Associating names and functions with objects 9

3a. Logical Ring 10

3b. Logical Bus 10

3c. Fully Connected Mesh 10

4a. Object Communication Protocol for DEMOS and ROSCOE 14

4b. Object Communication Protocol with Data and Control Links 14

4c. Object Cosmunication Protocol of Figure 4b Implemented on a bus 14

Sa. Interrupt Driven Object Communication Procedure 17

5b. Tandem Operating System Link Procedure 17

6. Object Addressing Using Names 21

7. Object Control Structure (Two Instances) 25

8. Object Invocation and Data Paths (Two Instances) 26

9. Message Assignment to Ports and Use of Kernel to Process
Interrupts 35

10. Layered Operating System Design 38

11. Program Control Block Table 43

12. Ready List Data Structure 45

13. Buffer Allocation 47

14. Memory Map 49

15. Memory Map Table 50

16. Logical Structure Describing Data Resources 60

17. Logical Structure of Hardware Resources
(from [Allen et al 1982]) 62

18. Logical Structure for Software, Transaction,
and Report Resources 62

19. Vector Interrupt Table 72

vL

LIST OF TABLES

Page number

0. Local Network Performance Metrics 28

1. Data Element Attributes (from Allen et al [1982]) 58

2. File Entity Attributes 59

3. Selected Hardware Entities and Attributes 61

4. Selected Software Entities and Attributes 63

5. Document/Report Attributes 64

vi

vii

INTRODUCTION

This report is a follow on to a previous report [Schneidewind 821.

It is assumed that the reader is familiar with that report. The primary

objectives of this report are the following:

ODescribe, specify and recommend an efficient, low overhead distributed

operating system design for SPLICE.

*Discuss the desirability of including a dictionary/directory system

(DDS) as a major component of SPLICE.

The report is organized around the following major themes:

We begin with a discussion of the opportunities and problems

involved with designing and using distributed systems. Since the field

of distributed systems is still evolving and design procedures for

developing these systems are not well understood, we provide a paradigm,

or model, of the distributed system design process, with emphasis on an

object-oriented network architecture approach. This model lays the

groundwork for the proposed distributed operating system design which

follows. In both the discussion of the paradigm and the operating

system design, emphasis is placed on the the use of message-based

interprocess communication as the vehicle for achieving distributed

control among the various functional modules which comprise SPLICE.

After providing a functional specification for a distributed operating

system, user interface specifications are provided, where the

dictionary/directory system (DDS) constitutes the major component. The

DDS is designed to provide information to both the user and system about

data and resources (i.e. objects) which exist in SPLICE, and to provide

names and addresses, so that these objects can be accessed in the

network. The report concludes with a discussion of the advantages and

1

disadvantages of a distributed operating system design and a description

of recommended steps for implementing a dictionary/directory system.

THE CHALLENGE OF DISTRIBUTED SYSTEMS

There are many interesting and challenging problems associated with

the design of distributed systems. These problems arise primarily

because a distributed system has many objects (e.g., software module,

processor) which operate autonomously. This independent mode of

operation is responsible for the increased effectiveness (e.g.,

increased speed of operation and reduced overhead) over a system with

centralized control. However, once the many objects are turned loose,

so to speak, without benefit of close supervision by the operating

system, many problems of coordination arise. This 'laissez faire'

operating environment presents challenges to the designer to find

solutions to the following problems:

OProcedures for interprocess and interprocessor comunication and

control

°Naming and addressing of objects

OAllocation of functions to modules and modules to processors

*Distribution of data across nodes of the network

*Specification of network topology

"Methods for deadlock prevention, avoidance, detection and recovery

°Procedures for recovery from system malfunctions

*Specification of appropriate levels of performance

Although the list is incomplete, it is illustrative of the major

design issue in distributed systems: achievement of coordination and

control of independent objects. Note that none of the problem areas are

exclusive to distributed systems - they are just more complex and harder

to solve in a distributed system. Also, observe that, in general, these

problems are not confined to a single network of objects, such as a

local network or long distance network. Rather, a multiplicity of

networks may be used in an application or by an organization, so that

solutions must be found in the context of internetting, that is the

communication of data over diverse multiple networks. In the case of

SPLICE, this involves 62 local networks interconnected by the Defense

Data Network (DDN). A primary design objective of distributed systems

is to allow the user to utilize objects independent of their geograph-

ical location and form of implementation (Watson 81 a]. This means,

that except for a degradation in performance, it should be as convenient

for a user at the Naval Supply Center (NSC) Oakland to access the

Inventory Control Point (ICP) data base at Mechanicsburg, as it is to

access the data base on the local computer network at Oakland. The

remaining sections of this report describe the recommended design for a

SPLICE distributed operating system and its associated data dictionary

function, which provides support for naming and identifying objects in

SPLICE.

SYSTEM ENTITIES

Many entities comprise a distributed system. These entities will be

used to describe our distributed system design methodology and

recommended distributed operating system design. Unfortunately, a

variety of definitions can be found for these terms in the literature.

3.. . i

We define those terms below in accordance with their meaning in this

report.

Oobjects anything intelligible or perceptible by the mind. A thing

serving as the focus of attention. An object has a name and

attributes. It could be, for example, a process, node,

processor, module or resource. It is synonymous with entity.

°Message: the unit of data transmitted between two objects.

°Functional: designed for or adapted to a particular need or activity.

°Functional Module (FM): an object which is functional (i.e., dedicated

to a specific activity such as terminal

management).

*Components of an FM: Sub-Modules

-Input (generalizable)

-Output (generalizable)

-Processing (unique)

eProcessz an PH in execution (Task is synonymous with process).

ORequestor: an FM which requests a service.

Setrver: an FM which provides a service.

OResources a consumable (e.g., printer paper) or non-consumable object

(e.g., memory) which is used to support the operation of

Fe.

ONode: a physical element of a network (e.g. processor) which connects

two physical communication links.

OLogical (virtual) links an imaginary communication path between two

objects (Fis).

OPhysical link: a physical communication path between two nodes.

*Logical Path: The desired route of a message, from sender to receiver,

independent of the actual physical path used.

4

'Physical Path: the actual route of a message from sender to receiver

through various physical nodes and data links.

'Connectivity: the number of object pairs which are directly connected

by logical or physical links, depending upon

circumstances, in a network.

*Accessibility: the number of objects which a given object can reach

directly (i.e., without going through intermediate

objects)

OPort: A data abstraction affiliated with an object. It has an address

and a buffer.

*Kernel: That part of an operating system which provides common

services (e.g., memory allocation) in each processor.

*Session: All of the activity (message exchange and processing) which

takes place between two or more processes for the duration of

a single task. (e.g. text edit or processing of a

transaction file).

*Layer: A partition in a computer network architecture model which is

assigned a specific function (e.g., session layer).

In this report emphasis will be on the relationship between FMs as

opposed to the activities of processes because many of the functions

which must be executed are independent of whether the FM is executing

(i.e., a process) as in, for example, when one FM sends a message to

another. It is of no interest to the sending FM whether the receiving

FM is executing or not.

DISTRIBUTED SYSTEM PARADIGM

Exact methods for designing distributed systems do not exist.

Solutions to the problems identified in the previous section are being

pursued in various research programs. One consequence of this situation

is that there are few examples of fully distributed systems in

operation. An objective of the NPS research program for SPLICE is to

advance our knowledge of distributed systems and to increase our

understanding of how distributed systems should be designed in order to

operate effectively. Our approach to achieving this objective, as

described in this section, is: create a paradigm, or model, of the

distributed system development process and use it as a guideline for

designing the recommended SPLICE operating system, which is described in

a later section. Furthermore, valuable insights into contemporary

distributed system design practices - some convincing and others

questionable - were obtained from a review of other research efforts and

distributed operating system implementations. These design approaches

influenced but did not dominate the creation of the paradigm

specifications. Subsequently, the paradigm was compared with the

various designs to determine their adequacy as models for designing

distributed network operating systems (e.g., SPLICE). In addition to

contributing to the understanding of distributed systems, an additional

motivation for developing the paradigm was to focus attention on the

logical properties of a distributed system. Too often, the

determination of a distributed system architecture is driven by

available hardware configurations (e.g., bus or ring) to the detriment

of emphasizing good design procedure.

A paradigm for understanding how one could approach the design of

distributed systems is to visualize the various phases of the develop-

ment and growth of a distributed system from birth (conceptualization)

to "adulthood" (operation). If, in our imagination, we could "simulate"

the growth of a system from its birth and observe how the system attains

its attributes as it develops from the embryonic conceptualization

stage into a mature architecture, the record of the maturation process

could serve to identify those attributes and attribute relationships of

a system which are critical to its effective operation. This approach

allows us to understand how the objects of the system should be nurtured

and molded in order to have the desired properties when the system

reaches maturity. In particular, we will be concerned with the

properties of a system which allow a high degree of decentralization of

control -a distributed system (Jensen 811. We would expect

decentralization of control to lead to low system overhead which, in

turn, should result in high speed performance. We should expect nothing

less from a distributed system. For, if performance cannot be improved

by using a distributed approach, why bother with the additional

complexity which is incurred when state information and communication

functions are distributed? That is to say, the easiest control system

to design and implement is the classical operating system structure,

where control is centralized in the supervisor and all requests for

service and resource allocation decisions must be processed by the

supervisor. We must be careful, when specifying the architecture of a

distributed system, not to fall into the trap of re-introducing much of

the rococo of centralized designs; otherwise, the goal of enhanced

performance will be defeated. Although our focus will be on distributed

system design, it should be noted that the methodology would apply

equally well to non-distributed system design.

7f

Conceptualization of a Distributed System

We begin the process of conceptualizing a system by identifying the

objects of the system. An object is an abstract representation of a

system entity such as a process, module or resource. One definition of

an object is that it is an incarnation of a resource (Wulf 741. This

method of representation has the great advantage of generality; it can

represent any logical system (e.g., distributed or centralized)

structure, independent of the physical implementation of the system

[Watson 81 bi. As a means of illustrating the evolution of a system, we

show a series of figures which chronicle the development of our model

system. Figure 1 shows the first stage - giving birth to general

objects, where no attributes or communication paths among the objects

have been assigned.

Next, we make these general objects specific by assigning

attributes which are representative of their function. Our objects have

a name (e.g., TM) and perform a single major function (e.g., terminal

management). Three objects of SPLICE have been created by assigning

names and functions as shown in Figure 2.

Object Communication Requirements

The third stage in the evolution of the objects into a system is

for the objects to acquire the ability to communicate. This is accomp-

lished by connecting the objects with logical links as shown in Figure

3. A logical link is defined as a representation of the capability to

communicate between two objects. It indicates nothing about the actual

physical connection topology which may be employed, once the hardware

configuration has been defined. If four objects are involved, as shown

in Figure 3 a, one possible logical interconnection scheme is the ring,

where direction of message flow is shown as

8

.o
00

Figure 1 ... Initial repreaetatim of objects in a system

00
Services

Ternal Data Base
ManagffentManaefwnt

Figure 2 ... Associating nawes and fumctions with objects

19

1 2 3 4

4

Figure 3a ... Logical Ring Figure 3b ... Logical Bus

Figure 3c ... Fully Ccumected Mesh

jo

clockwise. From a logical message processing standpoint this

arrangement has two disadvantages:

(1) In order for an object to communicate with a non-adjacent object,

the message must flow through and be handled by one or more nonaddressed

objects (e.g., a message originating at 2 and addressed to 4, must flow

through 3) and (2) a broadcast message (i.e., a message addressed to all

objects) must flow through all objects before the communication is

complete (e.g., a broadcast message originating at 1, must flow through

2, 3 and 4). A message should not flow through an object if it adds

nothing of value to the message. In contrast, a message sent on the

logical bus, shown in Figure 3b., is transmitted simultaneously to all

objects on the bus, without the message having to travel through the

objects. Thus, bus transmission logic is inherently broadcast mode.

Since a bus topology is very general and flexible (i.e., a message can

be sent to any or all objects without handling and processing by

intermediaries), it provides a convenient design model for representing

a local network type of distributed system. We note, in passing, that a

fully connected mesh topology, as shown in Figure 3c, could be used for

the model, since it provides a direct path from each object to every

other object. However, in a sizeable system, this topological

representation becomes very cluttered. More important, the number of

links in a fully connected mesh is n (n-l)/2, or on the order of na,

where n is the number of objects.

Unfortunately, we must point out that, although the bus topology

provides a clean logical representation, this model does not necessarily

map into the physical world as the topology with the best performance.

The reason is that, in addition to being a broadcast medium, a bus is

11

inherently a contention access system. Because of this characteristic

and depending on the details of the hardware design, two problems could

arise which could render the bus slower than the ring: (1) the bus is

in use when a node (the physical analog of an object) wants to transmit

and (2) a node's transmission collides (i.e., overlaps) with that of

another node, causing the transmission to be aborted and rescheduled for

a later, randomly determined time.

Interestingly, the matter of communication among objects brings to

the fore one of the most controversial issues in the area of local

network technology: bus versus ring topology (Pevovar 82, Parker 83).

A basic characteristic of a bus is the physical ability to provide

broadcast communication (i.e., every node can receive the sending node's

message essentially simultaneously). The maximum delay is the

negligible signal propagation time over the length of the bus. A ring,

on the other hand, does not possess this physical capability because a

message must be serially transmitted around the ring. However, it must

be noted that logically the equivalent of a broadcast transmission can

be achieved by the sender using an address code which will cause every

node to read the message, as it circulates in the ring. Whether a bus

or ring topology does this faster or with greater throughput depends

significantly on the load (Nadkarni 83, Saltzer 81, Salwen 83, Stuck

83]. With light load, there is less delay on a contention bus, relative

to a token ring, because there is high probability that a node will be

able to transmit its message inmediately on the buss also, there is no

waiting for receipt of a token, as there is on a token ring. Con-

versely, at high loads, contention is so great on a bus that the

probability is high that a node attempting to transmit will encounter

12

congestion. Indeed, there is no upper bound on delay time on a

contention bus, whereas delay time is bounded for a token ring, because

a node will be guaranteed to receive the right to transmit, via the

receipt of the token, within finite time.

Object Protocols

Once the objects of the distributed system have been 'given' the

ability to cosmunicate, the manner in which they are to communicate -

the protocols - must be decided. The design of a protocol involves many

issues concerning procedures for conmunication, such as the following.

ODegree of formality in arranging for communication: Is it possible to

simply send a message from 0 to 0 or is it necessary for 0 to

first signal its intent to communicate and for 0. to agree to accept

messages from 0. (i.e., handshaking)?

OMessage communication procedure: A useful model for message

communication between objects is the use of simplex (one-way) logical

links for request and reply control functions and a full duplex (two-way

simultaneous) logical link for data, similar to the link concept used in

the DEMOS operating system for the CRAY-I computer EBaskett 77] and in

the ROSCOE Distributed Operating System at the University of Wisconsin

[Solomon 79). An illustration of this model is shown in Figure 4a.

Although it is useful, it is unnecessarily complicated for efficient

system performance and not entirely representative of the general case

of object communication. This representation tends to artificially

partition objects into sources of requests and replies and into

requesters and servers. The Tandem Computer Corporation operating

system uses a similar representation (see Figure 5b) (Bartlett 781.

13

Da ta

Figu~re 4a Object Conmiunca:ion irntccol for- DEMOS anc POSCCE

Requester/Server Requester/Server

*Recuests, replies and data
*E.g., acknowledgements, error messages, recovery messages etc.

Figure 4b ... Object Conmmunication Protocol with Data and Control Links

User Mesaqae

Data Bus

Control Messages

Control Bus

Figure 4c ... Object Commtunication Protocol of Figure 4b Implemented on a Bus

14

In general, both requests and replies can emanate from the same

object. Furthermore, an object may be a server in one instance and a

requester in another. Indeed, within the time frame of concurrent

processes, an object can be both a server and requester. For example, a

db module could act as a source of replies (server) when retrieving

records in response to query requests and as a source of requests

(requester) when requesting that these records be printed by a

peripheral management module. A representation of this duality of

object functions is shown in Figure 4b. An example of an implementation

of this model on a local computer network, using a control bus for

control messages and a data bus for data messages, is described in

[Schneidewind 82] and illustrated in Figure 4c. It is interesting that

some physical implementations of local networks utilize separate data

and control busses [Kuhns 79]. It is important to note a key distinction

between the use of links as implemented in DEMOS and ROSCOE and their

use in our design. In the former, the links are established in advance

of comunication between two objects or tasks. This approach

facilitates establishing a capability or legitimacy for sending and

receiving and for reserving buffer space at 0. In our design the

links are created upon receipt and acceptance of the first message by

OJ from 0 Since our objective is to increase speed and reduce

overhead, we feel that handshaking procedures should be cut to the bone.

We accomplish this objective via the following procedures:

0 sends a message whenever it has one to send.

00 validates incoming messages as being legitimate for it to

process. Invalid messages are handled with an error message to

0 and to the system administrator module (i.e., Recovery

15

Management (RM) Module). An acknowledgement is sent from 0 to

0. when a received message is validated at 0..
1 3

OA certain amount of memory is dedicated to input buffer space for

0.. If the buffer is full when a message arrives, 0. will

J 3

reject it.

*A timer starts at 0. when a message is sent. If a time-out

occurs, the message is re-transmitted. If two retries fail, an

error message is sent to RM.

*Degree of asynchronism in communication: Fast communication can be

achieved if a message can be sent using an interrupt (hardware interrupt

for interprocessor or software interrupt for intra processor) to signal

the fact that a message has arrived at a receiving object. This

representation is shown in Figure Sa, where the operating system kernel

object 0k assists the receiving object 0 by processing the

interrupt, analyzing the priority of the incoming message and allocating

the processor to O, if the message is the highest in priority of any

ready processes, in a manner similar to that used in the Chorus

Operating System (Guillemont 82). Independent of this action, the

message is stored in the dedicated buffer space of 0.. Another

service provided by 0k is to replenish the buffer space of 0. from a

buffer pool when the amount of space falls below a pre-determined

threshold.

In contrast, the Tandem operating system link procedure is shown in

Figure 5b (Bartlett 781. The requester sends a message which is queued

for the server. During the LISTEN phase the server checks for the

presence of messages in the queue. If a message is present, the server

will obtain a copy of the message during the READLINK phase. Next, the

16

Requester/Server Reque er/Server

control nterru Cotro
Passe I V Passed

Ok: Operating System Kernal

Figure 5a ... Interrupt Driven Object Communication Procedure

Requester Server

Resut Copied R L

Figure~~~~~~ ~~~~ 5bI.Tne prtn ytmLn rcdr

A17

server will return any result to the requester during the WRITELINK

phase. Finally, the requester will terminate the transaction by calling

B53AIN.flK. The above procedure has the server calling LISTEN when it

wishes to check for the existence of message, rather than being notified

immediately, via an interrupt, of the presence of a high priority

message, as in Figure Sa, thus impacting on the ability to provide

real-time response.

Message Based Communication: this type of communication in a distrib-

uted system is advantages for four reasons: (1) contention for the use

of shared memory (the other major method of comunicating in multi

processor systems) is eliminated. However, it should be noted that we

may simply be trading memory contention for bus contention, if a

message-based system is used on a contention bus. (2) the critical

section problem (i.e., prevention of damage of data in shared memory by

multiple processes which share the data) [Ousterhout 80] is eliminated.

(3) Operating with its own local memory for buffering messages, a

process can be activated asynchronously to send or receive a message.

This provides a high degree of concurrency because there is no need to

provide process synchronization with semaphores or monitors for data

protection purposes, as is the case when processes comaunicate via

shared memory. The very act of message exchange between sender and

receiver (i.e., send followed by acknowledgement) provides a natural

form of process synchronization (Cheriton 79, Jones 79, Moore 82, Wood

82). (4) The message communication sub-system is the only part of the

system which must distinguish between local and remote (i.e., over a

long distance network) object access (Donnelley 791.

18

- -~-~-.. -

Oobject Naming and Addressing: identifying (naming*) and addressing

objects in a large distributed system is a challenging task because:

(1) The user should not be burdened with remembering and providing

object names and addresses to the system. Achieving this objective

usually requires an elaborate system for mapping names to addresses.

In the extreme, it may even be desirable to relieve the user of knowing

the names of programs and files and to provide a data dictionary

(actually the network services directory) in the system for obtaining

the names of objects when the user provides subject key words or

character strings. More will be said about our proposed data dictionary

in a subsequent section. (2) For recovery and performance purposes,

mobility of objects is highly desirable (i.e., programs and files should

not be fixed in location or limited to affiliating with only certain

nodes). This implies that binding of names to addresses should be

deferred as long as possible (i.e., just before a message is sent)

[Saltzer 82]. (3) Significant problems arise in attempting to maintain

uniqueness of names in a large network, consisting of numerous local

networks interconnected by a long distance network (e.g., SPLICE). It

would be unreasonable to require or to expect that object names will not

be duplicated among local networks. (4) From the standpoint of software

maintenance, it is desirable to place all name-to-address mapping and

routing information in one object (i.e., name server or data

dictionary). On the other hand, from the standpoint of speed, the

necessity to access the dictionary every time a name or address is

*Although not strictly correct, names and logical addresses will be
synonymous in order to maintain consistency with previous reports.

19

required would be prohibitively slow in a network with a high message

rate.

With regird to (1), it is extremely important for an object name to

be the name of a service or module which provides the service, rather

than the name of a node or network attachment point (e.g., in ARPANET,

an IMP number and port number). If this is not the case, network

services are location and hardware device dependent. Saltzer cites the

undesirable situation in ARPANET of the name of a node or service, such

as RADC-MULTICS, being in reality a network attachment point (IMP 18,

port 0) associated with a Honeywell 68/80 host computer (Saltzer 82].

If this host were to be attached to the network through another IMP,

either the routing tables would have to be changed to reflect this fact

or the service would have to be given a new name.

The problem of binding, as mentioned in (2), can be simplified

considerably be resorting to broadcast message transmission for intra

local network communication. Many local networks (e.g., Ethernet.)

provide a broadcast mode in which all nodes will recognize a transmitted

message. In the broadcast mode a designated bit in the destination

physical address of a message can be used to indicate the broadcast

mode. When this mode is used, it is unnecessary for the sending object

to obtain the address of the receiving object. All that is needed is

the name of the receiving object, which can be obtained from a variety

of sources: user, data dictionary or task table, which associates tasks

with names (see later section). The data link layer in each receiving

object would examine the name part of the destination logical address to

determine whether the message is addressed to it, or use the kernel of

the operating system for this purpose as shown in Figure 6. When a

20

03

CMo a
0 4A 4.

~C, Cc

A4 4

0 41

- lei

4'

c cA

06=

AA 4
.- -0

S. 40) c cu cj a)

4'IA

4' VI I~)CI I.

-A cc '
S.z

*1cU

4n Go

Ln0

41 41 4

21

message is a true broadcast type, that is the message is intended for

all objects, the "Message Type" field will indicate this. As reported

by Shoch, the original intent of the Distributed Computing System (DCS)

- a ring network - at U.C. Irvine, was for objects to communicate by

name [Shoch 78). The success of this approach in the DCS design would

have depended on hardware to recognize a broadcast message and an

associative memory for comparing the name in the message with the names

of objects resident in a node. This hardware was not implemented. A

feasible alternative to achieving this capability is to use a software

solution in a higher level layer (i.e., data link layer mentioned above)

for determining whether a message is addressed to a particular object.

A bus architecture is advantageous for this method of object addressing

because its natural mode of communication is broadcast.

In case of a message which is destined for an object located in

another network, this fact is indicated in the "Message Type" field.

This type of message would be sent in the broadcast mode, like other

messages, but only the network interface object (National Communication

(NC) Module See Figure 6) would respond to it. The physical destination

address would have been obtained previously from the data dictionary,

with the help of Session Services, as shown in Figure 6.

The approach of using the broadcast mode of communication, coupled

with using physical addresses only in the case of remote network

communication, allows complete mobility of objects, including the NC

Module.

A solution to (3) is to allow names and addresses to be duplicated

within each local network*, but to concatenate the node address with the

* By this we mean that a name in local network A may be the same as a
name in local network B, but two names may not be the same within A or
B.

22

4

I
network address, so that the full address is unique across the entire

network. Since a received message is examined first by physical address

and second by name, or logical address, object names may be duplicated

in local networks.

A compromise solution to the problem of (4) is to provide the names

of frequently referenced objects (i.e., local network names) in the

service table of each object; the remaining names (and physical

addresses), which pertain primarily to remote objects, are obtained from

the data dictionary.

Object Control

In the previous section our objects learned how to talk. If this

communication is to be more than a babble among peer objects, some type

of control structure must be imposed. The control mechanism is complex

due to the following reasons:

OA user process may have multiple sessions active at any time.

*An FM can be active in multiple sessions at any time.

*Two or more FMs can be active in a single session.

*Message exchange between pairs of FMs can be nested. That is FM(A) may

request a service from FM (B), which may, in turn, find it has to

request a service from FM (C) in order to complete the service for FM

(A). This results in a multi-tasking mode of operation.

OMessage exchange can involve remote (i.e., over the Defense Data

Network) as well as local communication.

OSome tasks are interactive, while others are completed on a deferred

basis.

Although the design philosophy is that of distributed systems, the

complexity of the processing environment requires that user terminal

23

processes be given considerable assistance in carrying out their tasks.

This assistance is provided by the Session Services (SS) Module (Bachman

781. User terminal processes specify task requirements, largely by task

name, and with the assistance of the data dictionary, where necessary.

It is the responsibility of SS to provide the additional information and

control which are necessary in order to complete the task. This could

include the following, depending on circumstances:

°Names and addresses (as required) of the FMs which are necessary for

processing a task.

Instructions or service codes for FM processing (to the extent that

this is known in advance).

Invocation of the first FM (called the Controlling FM (CFM)), via a

message which could also contain user data and authorization data, if

another node is involved.

"Receipt of a completion or error code from the CFM.

Figure 7 illustrates two instances of the control structure: one where

three local FMs and one remote FM are involved and a second involving

two remote FMs. Figure 8 shows this situation in greater detail,

indicating two tasks, (1) and (2), and the invocation (FM calls) and

return paths. Control can go from SS to a CFM, local or remote, thence

to other FMs: local - local and local - remote but not remote - local.

This restriction pertains only to FM calling sequences; data transfer

between FMs is fully bidirectional. The degree of nesting (i.e., number

of levels of FMs which should be allowed in a network) is a major

research problem in distributed systems, which cannot be totally solved

here. In concept, the total network could be considered as one large

pool of objects which could be nested without limit, and in any

24

Session
Services

Conntrolling

Remote F?4s

Figure 7 ... Object Control Structure (Two Instances)

25

Network

User

Application Process

Presentation Management

SessiM Servtesollin(g

Invoke/DataJ (1)

RMot FM

Figue 8 . OjectInvcaronvakeDta ata (2)o Instances)0

CompltionEr 26

sequence, in order to accomplish a task. This unconstrained approach

could pose serious problems relative to response time performance,

security, data integrity and recovery.

PERFORMANCE EVALUATION

Now that our system has evolved to maturity, with objects

identified, names and functions designated for objects, and a mechanism

established for object communication, we need some simple metrics to

evaluate the performance of our design. This will be only 4 brief

discussion of possible metrics, which are relatively simple to apply.

The development of analytical and simulation models for evaluating these

systems is a complex mathematical process. A model of the local network

will be covered in a future report. Our purpose now is limited to

presenting several easy-to-apply metrics which we hope will assist in

comparing various network topologies and protocols.

The performance metrics which appear below are defined in terms of

communication among nodes (e.g., processors). This is the most

meaningful interpretation of inter object communication in a performance

context, since a message must first be addressed to a node - perhaps by

broadcast transmission - before the message can be received by higher

level objects (e.g., functional modules and processes). In addition,

the metrics are restricted in applicability to intra local network

communication, since inter local network performance is dependent on the

topology and delay time characteristics of the interconnecting long

distance network. The same set of metrics applies to all local networks

source or destination, with the important qualification that destination

local network performance metrics must be augmented by the metrics of

27

the long distance network (beyond the scope of this report) in order to

provide realistic measures of performance.

Selected Local Network Metrics

The metrics which are defined below are compared for bus (carrier

sense multiple access), token ring (unidirectional) and star topologies

in Table 0, for an N node network.

1. Accessibility: The number of nodes which can be reached directly

(i.e., without traversing intervening nodes) with a

single message transmitted from a given node.

2. Connectivity: The number of nodes which a given node is connected

to.

3. Average Nodes Traversed: The sum of the intervening nodes

traversed by messages transmitted by a given node,

in order to reach each of the other N-1 nodes,

divided by N-1. This quantity is directly related

to the delay time introduced by nodal processing.

4. Average Message Delivery Time: The average of the sum of the time

to acquire the medium (e.g., bus) or obtain

control (e.g., token) plus message transmission

time.

TABLE 0

LOCAL NETWORK PERFORMANCE METRICS

CSMA TOKEN
BUS RING STAR

1. Accessibility N 1 0 (Note 1)

2. Connectivity N 2 1

3. Ave. Nodes Traversed 0 (N/2)-l 1 (Note 1)

4. Ave. Message Delivery Time T a+Tt N(T T n)-2Tn 2Tt+Tn

(Note 2) (Note 3) (Note 4)

28

/

Definitions

N: Number of nodes.

Ta: Average bus access time. This is a function of probability of

acquiring the bus which, in turn, is a function of N [Metcalfe

761.

T t Average transmission time on a bus or single link of

ring or star - message size in bits/bits per second transmission

rate. Signal propagation time is negligible and is ignored.

T : Average delay time incurred in a node of ring or star. Variesn

for ring depending upon whether the token is only passed through a

node or whether the node captures it and then transmits a message

[Tropper 81, Yuen 72]. For a star, there is only one instance of

this delay time, as the message traverses the central switching

node.

Notes

1. Assuming central node used as a switch for other nodes.

2. Bus access time + bus transmission time.

3. The time for the token to circulate one-half of the ring distance

(assuming no intervening node captures token) plus the time for the

message to be transmitted one half of the ring distance, minus two

nodal delay times to account for transmitting node not being an

intervening node in token capture and message transmission.

4. Transmission time on two links: source node to central node and

central node to destination node plus delay time in switching node.

29

As can be seen from Table 0, the bus has very good properties with

respect to a message reaching other nodes without incurring nodal delay

time Tn . Furthermore, since Tt will be equal for all local networks

with the same bandwidth, comparative performance between a bus and ring,

for example, hinges on the relationship between Ta and T n. Both of

these variables are a function of N (i.e., a function of total offered

load) and traffic rate. When the load is light, the probability of

acquiring the bus is high, and T is low relative to the time for aa

node on a ring to acquire the token (function of traffic, N and T n).

At high load, the probability of acquiring the bus is low and bus

acquisition time is unbounded. Under high load the token acquisition

time increases, but this time is bounded because a given node is

guaranteed to acquire the token in finite time by virtue of the

sequential nature of token passing.

The problem of unbounded access time for a random access bus is

solved by using a token passing bus, but at the price of incurring

higher overhead for all transmissions.

DISTRIBUTED SYSTEM DESIGN STRATEGY

Now that the paradigm has been used to: (1) explain how

distributed systems evolve, (2) identify their general properties and

(3) describe specific characteristics which are necessary for efficient

distributed system operation, we are prepared to delineate a design

strategy for achieving these characteristics. In distributed systems

and local computer network architectures, the characteristics of objects

and the manner in which these objects communicate are very important

considerations in the design of these systems. Since a distributed

30

system does not rely on centralized control, much of the burden of

providing effective coordination of diverse objects falls on the

communication subsystem and the method of interprocess communication.

In order to provide reasonable response time to the user and to avoid

excessive resource consumption attributable to support functions, the

communication and interprocess subsystems should be as simple as

possible, consistent with the need to maintain state information for

recovery purposes.

With this general guideline in mind, various design principles are

listed below which are applied to the design of a distributed operating

system for SPLICE (described in a later section).

FUNCTIONAL MODULES

OA minimum amount of state information (e.g., status of transaction

processing) should be held by each FM. If this principle is adhered to,

it will not be necessary to reconstruct transaction status information

for the numerous FMs which could be involved in processing multiple

concurrent transactions. A better alternative to maintaining extensive

state information in individual FMs is to centralize this information in

the Session Services (SS) Module, the module which has responsibility

for monitoring user sessions. The centralization of recovery procedures

is an exception to the general rule of dispersing responsibility for

functions across modules in a distributed system. The primary reasoa

for this exception is that recovery requires a global view of system

status. A global view is not available from individual FMs; it is

available from Session Services. Also, changes in recovery logic would

be confined to changing SS and the recovery management (RM) module by

using this approach.

31

*Contrary to the foregoing principle concerning the preservation of

recovery information, as much processing intelligence as possible should

be placed in each FM, thus limiting dependence on intermediary FMS and

reducing the associated message traffic, consistent with requirements

for modularity, recovery and transaction back-out. This policy is

followed in order to localize decision making and to make it unnecessary

for the FMs to have frequent need for the services of an operating

system executive, thus reducing overhead delays, at the price of some

duplication of code in the FMs. In order to meet these conflicting

requirements (e.g., modularity vs. speed), it will be necessary to

decompose FMs into submodules.

OInformation which is required by an FM to understand which task to

perform when a message is received and where to send the results after

the task is completed, is contained in a service table accessible by the

FM. An FM finds out what to do by processing service codes, which have

been placed in the message by SS, against the service table and passes

the result to the 'calling' FM or to the next FM in the processing

sequence, depending upon circumstances. In addition, the table tells

the FM which transactions are legitimate for it to process and where to

report error conditions. This procedure simplifies software maintenance

by confining changes in transaction processing logic to changing the

service tables and avoiding changes to FM code.

OSession Services coordinates FM activity and provides, to the extent

possible, work instructions via the service codes it inserts in messages

to the FMs. In some cases, work breakdown cannot be completely

determined in advance by SS because the sequence of operations may be

data dependent or highly interactive. In such cases, SS merely passes

32

control to the first FM which is to perform an operation and subsequent

'calls' to other FMs, if any, take place according to processing

conditions. Session Services retains and maintains state information

until either a completion message or error message has been received

from the controlling FM.

Characteristics of Message Exchange Between the Sending FM [FM(S)) and

the Receiving FM [FM(R)].

0When FM(S) has a message to send, it sends it without establishing a

link with FM(R) beforehand or asking permission of FM(R) to send a

message.

OFM(R) does not wait for a message; rather, it reacts to a transmitted

message by means of a call from the operating system kernel. It does

not listen for a message nor does it need to grant permission to FM(S)

to send a message.

*No exchange of messages (handshaking) takes place prior to

transmission. There is no need for this because: (1) If FM(R) is down,

FM(S) will time out and repeat the transmission until it receives an

acknowledgement from FM(R) or gives up and reports an error condition to

the Recovery Management (RM) Module or (2) FM(R) will ascertain, via

table look-up, whether this is a valid message for it to process. If

not, it will send a negative acknowledgement to FM(S) and also report it

to RM.

Operating System Kernel

OThe kernel of the operating system should perform a minimum number of

tasks (Boebert 78] and only those which are common to service all FMs

residing in a processor (e.g., memory management). This is done to

minimize redundant FM code. A copy of the kernel would be resident in

33

each node. Any function which is unique to an FM should be provided by

it, rather than by the kernel. The kernel acts on interrupts, as shown

in Figure 9, and allocates an FM(R) receive process to the appropriate

port. In Figure 9, a concatenation of FM(S) name and session number are

used as a port address. Each FM has a list of valid FMs with which it

is allowed to communicate, thus providing FM(R) a name to match to the

name in the received message, thus contributing to system security. The

session number is assigned by SS. In addition a sequence number, not

shown in Figure 9, is assigned by SS in order to ensure correct message

sequencing for internetwork traffic. Port buffer space is dedicated to

messages received by FMs with high input rates and dynamically allocated

for FMs with low input rates. The minimum port buffer space is equal to

the maximum message fragment size of a single message. A single copy of

reentrant code provides multiple receive processes, as shown in Figure

9. This feature, combined with the dedicated ports, allows a high

degree of message multiplexing through an FM(R).

The mechanism of Figure 9 illustrates the message oriented approach

in which no lir!. is established in advance of communication between

FM(S) and FM(R) nor is agreement concerning port addresses required

before a pair of objects can communicate [Akkoyunlu 741. With this

approach, a message is addressed to a process and implicitly to a port

by virtue of the name of the FM(S) and its associated session. The

connection - oriented approach, on the other hand, has ports which are

independent of particular processes. The former approach is used in

this design because of its lower overhead, consistent with the argument

of an earlier section about the need to reduce communication set-up

time. It should be noted that, in our design, a port is not a logical

34

Node

Rece iveF14(s) Ports Processes

Sesson ISingle
A.1 Copy ofFl4(A) b-Reentrant

Ses i 3n7' 1bCode
A.2___ FM(R)

Session 1I.
FM(B)

Kernel

Interrupt

FM(S) Sending Functional Module
FM(R) Receiving Functional Module
Port Address :X. Y, where X is name of FM(S) and Y is Session Number

Figure 9 .. Message Assignment to Ports and Use of Kernel to
Process Interrupts

35

data path for sending a message from one process to another, as in

[Walden 721, but rather an identification of a storage bin at FM(R) for

storing and sequencing the messages from a given FM(S) and session.

The kernel supports interprocess communication with hardware

interrupts (interprocessor communication) and with software interrupts

(intraprocessor communication), as suggested in Figure 9.

Network Operating System Design

After having laid the theoretical foundation for the design of a

distributed network operating system, we turn now to the details of

implementing such a system. The emphasis in this section is on the

design of a local area network operating system (LANOS) for supporting

intra LAN communication and logistics transaction processing. Func-

tional design specifications for inter LAN communication (over the

Defense Data Network) are described in [Schneidewind 82]. The operating

system design for inter LAN communication will be provided in a future

report.

This section is organized as follows:

First, Specific Operating System Design Objectives are described, in

order to key the discussion to the details of the operating system

design which follows.

The following topics are then covered:

-Interprocess Communication

-Scheduling

-Deadlock Prevention

-Memory Management

-Shared Resources and the Critical Section Problem

36

Next, the User Interface Specifications, or user view of the system, is

presented, consisting of the following:

-User Calls

-Dictionary/Directory System

Last, the computer hardware environment, in which the operating system

will operate, is given in the Computer Architecture part.

An overview of the layered operating system design is shown in Figure

10.

Operating System Design Objectives

The objectives of the design approach are speed and low overhead.

One implication of this objective is that there will not be a central

supervisor. Each processor, and functional modules which it serves,

will have its own operating system services, which will be largely

implemented in micro code for speed advantage purposes. Replication of

function and greater use of memory is the price incurred in order to

reduce overhead and increase speed.

The traditional operating system approach is for one copy of the

operating system to be available to all user processes and for the user

processes to invoke the operating system via a trap or supervisor call

instruction. The processor performs a context switch to that of the

supervisor, executes the function and returns to the user process. In a

bus-oriented multiprocessor system, the processors which do not contain

the single copy of the operating system execute much slower than the one

processor that does contain the copy of the operating system in its

local storage. This occurs because of bus contention incurred by

processors which must make remote memory accesses to the operating

37

i

User Interface
* Command Language
* Session Services

Process Management
• Inter process communication
• Interprocessor cammunication
.Deadlock prevention
.Critical section considerations

Shared Shared Loqical RAM management
Resource Network Resource .Transaction Work Space
Management Management Management Allocation/Deallocation

DBMS .Intra LAN Memory (RAM) Management
.File Server Commun. Buffer Allocation/Deallocation
.Catalog Inter LAN .First Fit Algorithm
.File Macros Commun.
.Dictionary/ TCP/IP
Di rectory
I/O Control
.Interrupt Handling
.Message Primitives

Firmware (Non Changeable Part of Operating System)

Multiple Minicomputer Hardware

Figure 10 . . . Layered Operating System Design

38

system code, via the bus. One way to prevent performance degradation is

to provide a copy of the entire operating system in every processor's

local memory, but this may be infeasible due to the size of the

operating system and required memory size. The solution used in the

Medusa distributed operating system is to distribute the various

operating system functions (i.e., process management, memory management

and file management) to different processors. [Ousterhout 80]. Each

processor is dedicated to performing a single function. Operating

system functions are invoked by messages containing parameters which

specify the desired service.

In the LAN operating system, functions are associated with each

processor and serve the functional modules which are resident in a

processor. In the extreme case, in the LANOS, there could be a single

FM per processor. This would simplify interprocess and interprocessor

communication because it would allow a single consistent interprocess

signalling method to be utilized. All communication between FMs would

be accomplished by putting a message on the bus (broadcast mode). Each

processor would read the message and copy it if it is addressed to it;

otherwise, the message is ignored. From the adaptor, the message would

proceed via DMA to the processor. Unfortunately, putting a single FM in

each processor would require a minimum of eight processors. The

bandwidth required for the minicomputers contemplated for the LAN could

not be easily accommodated with existing commercially available LANs.

More important, there would be excessive bus contention involved (i.e.,

every time a message had to be transmitted between FMs, it would have to

be placed on the bus). Therefore, FMs which have a great need to

communicate are grouped in the same minicomputer.

39

This will result in both interprocessor and intraprocessor signalling,

but bus traffic will be reduced significantly. Also, greater uniformity

in minicomputer capacity (i.e., RAM size and disk size) will be

achieved. This is important from a reliability and recovery standpoint

because FM size varies considerably - from a complex data management

module to a relatively simple peripheral management module. If there

were one FM per processor, either there would be enormous variation in

the capacity of individual processors, or there would be significant

wastage of processor capacity, if processors were of equal capacity. In

the former case, a failure in a large processor (where the DBMs is

resident) would not allow a smaller 1rocessor to take over the functions

of the large processor in a degraded mode. Related to this point is the

desirability of providing mobility of FMs and physical location

independence so that, depending upon the availability of hardware, FMs

can be moved from one processor to another. Furthermore, hardware

maintenance and the possibility of future hardware upgrades is

simplified by providing processors with similar, although not

necessarily identical, capacities. The nature of the interprocess and

interprocessor message communication system, which is used to implement

this concept, is described in the next section.

INTERPROCESS COMMUNICATION

1. Definitions

A. Functional Module

A functional module (FM) is a unit of software which performs

a single major function such as terminal management, data base

management, peripheral management, etc.

40

B. Process

A process is the execution of a functional module.

C. Interprocess Communication

The processes of two functional modules communicate when a

message is transmitted from the transmitting functional module

FM(T) to the receiving functional module FM(R).

D. Message

A message may be a user initiated transaction or a system

generated control message (e.g., acknowledgement).

2. Method of Interprocess Communication

As indicated earlier for interprocessor communication, this

occurs by the FM(T) transmitting a message on the bus, all

FM(R)s reading the message, and the addressed FM(R) copying

the message into dedicated input buffer space which is

reserved for the given FM(T). A message is transmitted when

an FM(T) has a message to transmit, as a result of completing

a processing step, and without the approval of "higher

authority." For intraprocessor communication, an SVC type of

interrupt is generated, the executive is called and

concurrently the message is stored in a dedicated input buffer

space which is reserved for the given FM(T). Every correctly

received message is acknowledged by FM(R) to FM(T) and only

one message can be unacknowledged between a pair of

communicating FMs at any instant in time. A timer is set into

operation by FM(T) when the message is sent. A message will

be retransmitted if the timer interval expires prior to the

receipt of an acknowledgement from FM(R). If this happens

three times, further communication between FM(T) and FM(R)

41

ceases and FM(T) reports the situation to the Recovery

Management (RM) module for corrective action. If FM(R) should

receive a message when its input buffer is full, it will

discard the message. In addition, FM(R) will have a duplicate

message check. Because of the stop and wait nature of the

transmission, FM(R) will only have to hold one message.

3. Program Control Block (PCB)

The PCB (Deitel 82] will be maintained by the Executive in each

processor. It will contain the following information concerning each

process:

"Identification

-Based on maximum number of processes allowed

OState (Ready, Blocked, Running)

*Reason for being Blocked (Put to Sleep)

-I/O Wait

-Waiting for message acknowledgement

-Resources unavailable (lack of memory, etc.)

-Etc.

"Current number of processes

OMaximum number of processes allowed

*Register save area

°Pointers to resources being utilized (memory, I/O, disk space, etc,)

The layout of the PCB is shown in Figure 11.

SCHEDULING

The LANOS is interrupt driven: a process continues to execute

unless interrupted. The highest priority ready process is always

executed after recognizing the interrupt. There is no time quantum

42

C1

Bits

31 29 23 19 i5 11 9 7

IProcess Process
(1) I() . Priority I'D.

Current Number Max. Number of

fProcesses Processes

Pointer to Process
Memory Arzea

Pointer to Process Disk Space Repeated
.... for Each

Program ..Cntrol Register Register S~~e
P~r Ctro1Save

Regi~sters Ae

Notes

Process It. Process Priority, Current Numrer of Processes, Max. :.;uer

of Processes: 100 users max.. 10 Processes per user max.-# I0 bits.

(1): Process state: Ready, -lucxed, Runninq.

(2) : Reason for r rocess beinq biocKed: :,'C Wait. etc.

Pointer to Process Memory Area: Physical Address Space limited to
16 M Bytes --+ 24 bits.

Figure 11 ... Proqram Control Block Table

43

allocated to each process nor are processes executed in a round robin

fashion. The reason for this is that the system is designed to provide

transaction processing, not a general purpose, interactive, time sharing

service. This system will process various transactions at different

priority levels. The priority is provided by the user at the terminal,

when the transaction is entered, or is inherent to the type of

transaction. The use of the processor for initiating I/O and

recognizing and processing interrupts will take precedence over

computational processing, because the application processes are i/O

oriented. Appearing below is the process priority, going from highest

to lowest priority.

0Operating system processes

-System malfunction and recovery events

-All other operating system events on FIFO basis

°Application processes by transaction priority

OWithin a priority class:

-Output from a FM

-Input to a FM

-Processing for a FM

Although a time quantum is not utilized, a process is not

allowed to execute indefinitely. When a process has executed for the

maximum allowable processor time, a timer interrupt will cause that

process to be put in the ready queue at its original priority level.

The data structure for the ready list is shown in Figure 12.

DEADLOCK PREVENTION

The four necessary conditions for a deadlock to occur are the

following (Coffman 71):

44

Linked lists (Queues - FIFO)

of processes of equal priority

Highest Priority Processes

l Process 1H "Process 2H Process nH

First process to Processes always added
execute at end of list in given

* priority level* 4-
Lowest Priority Processes

Process 1L Process 2L Process nL

Last process to
execute

A process is deleted from its list when it blocks and is reinstated on

its list (at the end) when it unblocks.

Figure 12... Peadv List Data Structure

45

(1) Processes claim exclusive control of the resources they require

(mutual exclusion condition).

(2) Processes hold resources already allocated to them while waiting

for additional resources (wait for condition).

(3) Resources cannot be removed from the processes holding them until

the resources are used to completion (no preemption condition).

(4) A circular chain of processes exists in which each process holds

one or more resources that are requested by the next process in the

chain (circular wait condition).

Only one of the above conditions must be violated in order to

prevent deadlock. The method chosen is to violate (2) by dedicating all

the space (memory and disk) to a FM and each of its submodules which

would be required to process a message from each of the FM (Ts) with

which it is currently communicating. In addition, there can only be one

unacknowledged message existing between a given FM(T) - FM(R) pair at

any time. FM (T) will not transmit another message to FM(R) until the

previous message has been acknowledged. A FM(R) will not need to

request more space. It will have it pre-allocated (see Figure 13). If

a message arrives due to timeout at FM(T), failure in acknowledgement,

or arrives before the buffer is cleared, the message is discarded.

Finally, (3) will be violated by preempting a process from further

use of the processor, if the amount of processor time consumed equals

the maximum allowable time. This will also prevent the indefinite

postponement problem (Deital 82).

MEMORY (RAM) MANAGEMENT

In keeping with the design objectives of speed and low overhead,

memory management will be simplified as a result of doing the following:

46

i i i i i i i il ill i • i ...

Buas mess age

Receive Receive
I jIand

physical AdasitAaportorc~ Cp

Address Aatr toranm

Recoqflitiofl Processor 3
(on Receive)

Addressl Physical Physical
AdesPhysica 1 uf fer Buffer

Recognition Buffer
(on Receive)

Logical ml(T) FM (R)FIT
FnP

(Dedicated)Prcso3
Prooessoor

Figure 13 .. Buffer Allocation

47

0Input and output buffer space will be pre-allocated and dedicated to

each of the FMs with which a given FM can communicate (see Figure 14).

OFMs are permanently stored in memory, but not in fixed locations (i.e.,

FMs can be relocated, depending upon the configuration which is

available and the need to relocate modules as a result of recovery

actions).

OVirtual memory or swapping are not utilized. Therefore, FMs are not

subject to paging or swapping.

°The only dynamically allocated memory is the work space used by a FM.

The amount of workspace which is needed is determined by user demands

and is highly variable. Each FM will be assigned its own workspace, as

needed, in order to speed up execution and to avoid the use of shared

data, which would result in a critical section problem.

In addition to speed and overhead objectives, the above procedure

is used because the use of the FMs is highly predictable: at least two

FMs are used to service every user command. The frequency of use of all

FMs is high. Therefore, if dedicated RAM (and disk) were not used,

considerable time would be lost in continually allocating this space

dynamically. The memory map is shown in Figure 14.

In order to conserve RAM space, and because all users share FMs via

the use of a terminal command language, FMs are reentrant. A memory map

table, using a first fit algorithm, and base and limit registers

(Calingaert 82], is shown in Figure 15.

SHARED RESOURCES AND THE CRITICAL SECTION PROBLEM

The critical section problem arises when two processes attempt to

access global variables simultaneously, thus destroying the integrity of

these variables (i.e., a given process cannot be assured as to the

48

zEXrcfIV Not subject to change

(RCH)

Subject to change

PM, Code

Dedlcated PAN and

Foentrant Code

SCode

Input Sufer

Incit buffer

FA.
'

_ _ _ecicited PA'4

Output buffer

Cutjput buffer

Work space

n

RAM allocated dynamcally
as needed

work Space
a

Figure 14 ... Memory Map

49

Number of Bits

9 3 1 19

Process Access Used/
1. D. Richts Available Address

(R.W.E.) __ _ _ _ _ _ _ _ _ _

1 0 4K

2 S 8K

3 12K
Allocated Y 1 - Base Recister

Space 2

(F-rst 24K
y 'S

-- ,Li t Fealster

127 51,6Y

':ote$

- c. ne entri.' fcr each 4K bloc. irn bank of 5121" bvtes.

2. Total of 128 entries.

Used = 1, Available = 0.

4. First fit algorithm used, in blocks of 4K bytes.

.ecinnin- and endinc addresses placed in Base Peaister and Limit
Reaisters, respectiveiy, when process is dispatched.

Figure 15 ... Memor,; Map Table

50

values of the variables at any instant in time). The portion of the

code of a process which accesses the global variables is called its

critical section. We must ensure that mutual exclusion is guaranteed.

That is, the two processes must not be allowed to execute or enter their

critical sections at the same time.

The one place in this system where resources are shared is

described below. The solution to the critical section problem is to

employ a variant of the monitor concept (Calingaert 821. A monitor

prevents a process from requesting a resource when that resource is

being used (i.e., it ensures mutual exclusion). It also provides a

mechanism for the process to release resources and return them to the

resource pool. The implementation of the monitor is by means of the

Resource Allocation module, as described below.

FMs bid directly for the use of additional reusable resources

(e.g., memory, fixed head disks) which may be necessary for providing

greater work space in order to conduct multi-tasking. A small Resources

Allocation (RA) module assists the FMs in obtaining sharable resources.

This module is associated with the Resources Status Table (RST). The

RA, which is implemented in a dedicated processor, performs the function

of shared resource allocation. It has available to it memory and fixed

disk units which it allocates to the FMs on a shared basis. Naturally,

FM processing which involves the use of shared resources will be slower

per transaction than processing which uses dedicated resources because

of transmission delays on the LAN and contention for shared resources.

However, overall throughput would be increased by utilizing shared

resources.

51

A module only bids for the use of shared resources, when it is

presented with multiple tasks to perform and is unable to process them

concurrently without the use of additional (shared) resources. The FM

sends a resource request to RA, via a control message on the virtual

"control bus", giving it the type and quantity of resource desired. In

some cases multiple resources will bw required. The RA module sends a

grant" message to the FM if the resource is available in the quantity

desired; RA will then subtract the acquired amount of resource from the

available quantity of resource in the RST. Upon receiving a "grant"

message, FM will set an interval timer, via its executive, to a

system-specified maximum value. Upon the expiration of this interval,

the FM returns the resources to the pool by sending a "release" message

to RA. The RA module then adds the released resource to the quantity

available in the RST. The timer interval length can vary among FMs,

depending upon processing priorities, and can be set by the System

Operator. An FM must bid again, if resources are required subsequent to

the release of resources. If the resource is not available in the

desired quantity, the RA sends a "denied" message to the FM, which will

continue to process with the use of dedicated local resources only. No

record is kept by RA of this bid, and the FM must rabid at a later time,

which is determined by an interrupt generated by a system-specified and

operator adjustable timer interval set by the FM.

All of the above descriptions pertain to the use of control

messages flowing on the "virtual" control bus. Once an FM has acquired

a resource, it will send data (file records in some cases) to be stored

in the resource unit and read data from the resource unit, with the

assistance of RA. Once assigned by the RA, and until released by the

52

RA, the resources which have been granted to a FM are the "property" of

the FM and cannot be shared by another FM. Data messages will be

transferred on the "virtual data bus" and will be addressed to RA

according to a two level address procedure (i.e., by the node in which

RA resides and by the name of the RA module). RA must map between the

message identification, as stored in a message by the FM, and the

physical shared storage space. Upon receipt of a control message from

the FM, requesting data from the resource unit and giving the message

identification, RA will map to the physical storage locations, retrieve

the data and send it to the FM.

Although the above "contention system" of allocating shared

resources is crude in that resource requests are not queued, and

requests will not necessarily be served on a FIFO basis, it has the

great advantage of simplicity and low cost, due to the self-regulatory

nature of the scheme. As soon as recordkeeping and queue maintenance

are introduced to keep track of multiple requests - order of receipt,

type and amount of request - the complexity rises rapidly. It is

possible that sufficient dedicated local resources could be economically

provided to each FM, such that an overload would rarely occur, and

shared resources could be dispensed with entirely.

USER INTERFACE SPECIFICATIONS

User Calls

The following user comeands, which will be expressed via a terminal

command language, and implemented in the Terminal Management (TM)

module, will be provided:

ORead and display N file records.

*Write N file records.

53

Read and print N file records.

*Write and print N file records.

6Copy N records.

oEtc.

Invoke editor.

*invoke application module.

Invoke utilities and library routines.

"Etc.

°Change a file record in specified fields.

°Delete N file records.

Insert a file record.

The above user calls will require the use of system primitives such

as the following:

OSEND MESSAGE ODEALLOCATE BUFFER*

°SET TIMER °ALLOCATE WORK SPACE

°RECEIVE MESSAGE °DEALLOCATE WORK SPACE

*ACKNOWLEDGE MESSAGE °REQUEST RESOURCES

OALLOCATE BUFFER* ORELEASE RESOURCES

OETC.

*Only used when more than the normal dedicated buffer space is required.

Appropriate user and system parameters would be used with the above

calls and primitives.

JUSTIFICATION FOR SPLICE DDS

SPLICE is an intricate, highly complex distributed network requiring the

coordination and management of a wide range of information resources.

The applications environment alone consists of major system like IDA

(Integrated Disbursement and Accounting), APADE (Automated Procurement

54

----

and Date Entry), UADPS-SP (Uniform Automated Data Processing

System-Stock Points), and Trident LDS (Logistics Data System), each with

its own set of data elements, files, programs, transactions, users, and

reports. The need to manage these resources is critical, and in a

distributed system even more so since they will be dispersed

geographically and therefore more difficult to control.

One vehicle which can contribute significantly to this information

resource management is a dictionary/directory system (DOS, variously

known as "data dictionary", "data dictionary/directory", and *meta-data

base"). A DDS is a set of one or more databases containing data about

an organization's information resources which can be retrieved and

analyzed using standard database management system (DBMS) capabilities

(e.g.: query languages and processors).

The DDS has seen widespread but inconsistent usage in centralized

processing environments [Curtice 81). The primary advantages of a

well-designed DDS which are applicable to SPLICE are [Allen et al. 82]:

1. a DDS provides a documented inventory of information

resources;

2. a DDS provides a control mechanism for the analysis and

design of new information resources;

3. a DDS provides resource independence.

The documentation features of a DDS would be particularly valuable

for SPLICE. Referring again to the applications environment, a DDS

would require users and analysts to define system data elements, files,

etc. which would entail updating old definitions, discarding outdated

ones, and introducing new ones. It would, in general, provide an

55

opportunity for establishing standards of data definition and

description for application programs over the entire SPLICE system.

Once the DDS has been designed and implemented, it could serve as

the focal point for further application program analysis and design. In

particular, it could facilitate the conversion of a file-oriented

application system to a DBS-oriented system when DBMSs eventually

become available on SPLICE. It could also assist in developing brand

new programs by cataloguing data requirements resulting from

requirements analysis activities [Teichroew and Hershey 77].

The ultimate power of a DDS resides in the resource independence

which it provides, that is, resources are protected from changes in

other resources (e.g.: data entities can be modified without modifying

the application programs which access them and vice versa). This allows

a high degree of resource usage flexibility which is especially vital in

a distributed environment. A SPLICE DDS which enforced uniform resource

description standards, for example, would enable large application

systems like APADE and UADPS-SP to interface much more smoothly and

conveniently.

The potential benefits of a DDS for SPLICE are significant but

caution must be exercised. Few standards exist for DDS usage within

centralized environments (Curtice 81] and fewer still for distributed

environments. The following sections examine some of the issues which

must be addressed in the design of a DDS for SPLICE.

SCOPE OF DDS

Dictionary directory systems have traditionally been viewed as

data-oriented and either tightly or loosely coupled with DBMSs. Only

recently has the role of a DDS been viewed in more comprehensive terms

56

- H -- - - - -- - - -

as an information resource management tool [Allen et al. 82]. In this

context, data is only one of the resources a DDS keeps track of. Other

resources might include programs, files, hardware (concentrators,

multiplexors, CPUs, etc.), user accounts, and reports.

This resource-oriented approach is strongly recommended for the

SPLICE DDS over the more restrictive data-oriented concept as typified

by the COBOL DATA DIVISION or existing data description languages.

SPLICE consists of many diverse elements, all of which need to be

managed but only some of which are data elements. This is explicitly

recognized in the SPLICE specifications which call for a configuration

management system (CMS) which will store and retrieve information on

hardware, software, and documents pertaining to SPLICE configuration

[SPLICE 81]. Clearly, the CMS is meant to serve similar functions to a

DOS for these particular resources. Incidentally, this suggests that

the SPLICE DDS might be built from the CMS, or alternatively, that the

CMS might be subsumed by the DDS.

Although a resource-oriented DDS is a generalized and flexible

tool, it raises the knotty question of "where does it fit within the

SPLICE network?* If the DDS were strictly data-oriented, it would be

easy to respond that it should be part of the data management module.

Because it contains information on where different resources are

located, however, and because several functional modules may use this

information to provide message routing or other vital system resource

allocation tasks, it can be persuasively argued that the DDS should

transcend data management and be an integral part of the network

operating system itself. Independent of the DDS's relation to the

operating system, however, the data management module must still be

57

invoked in order to access the DDS since this involves database access.

As a result, even though the DDS is more broadly associated with

resources, it is still reasonable to make it part of the data management

module even at the cost of possible information redundancy or access

inefficiency.

CONTENTS AND LOGICAL STRUCTURE OF DDS

Since the DDS is resource-directed, it will contain more than just

information about data. In particular, the following resources should

be represented: data, hardware, software, transactions, personnel, and

documents. Entities, attributes, and relationships associated with

these resources are presented below.

Data resource information should include the following entities:

data elements, data groups, schemas/subschemas, records, files, and

databases. Attributes for these entities must be determined by the

anticipated usage of the DDS. Typical attributes for the data element

entity are suggested by Allen et al [19821 in Table 1. These attributes

have been culled from existing comercial data dictionary/directory

systems. Attributes for the file entity have been suggested in the

SPLICE specifications (SPLICE 811 and appear in Table 2.

TABLE 1

Data Element Attributes (from Allen et al [1982])

Type Language names

Range Repetitions

Length 88 Levels

Unit of Measure Key

Usage Default value

Display format

58

TABLE 2

File Entity Attributes

File name Format (seq, random, bin)

Locations Access control

Size (in bytes) Access security protection

Relationships between data entities are also a function of

anticipated usage. One possible network structure relating data

entities is shown in Figure 16. This structure implemented in the

appropriate DBMS would allow the following queries to be answered via

conventional query languages and processors:

1. "List the record layout (all data elements and keys) for the

IDA Job Order Reference File."

2. "What locations in the network contain the Purchase

Requisition File?"

3. "What files and databases contain the data element

FEDERAL-STOCK-NUMBER?"

4. "Where can I order PART-NUMBER = 'POOO345AKF'? ,"

59

SE

D AB A TE-E

L.E OP

G,

?ligure 16: Logical Structurot 0eciz Data
Resuzea cs

60

Hardware entities and attributes have been specified as part of the

Configuration Management System (CMS) (SPLICE 81] and a selective sample

is shown in Table 3. One valuable use of the DDS regarding hardware

resources is in displaying topological information about all or part of

the SPLICE network. One logical structure which might provide this

capability within a conventional DBMS environment is given in Figure 17.

Possible queries might include:

1. "List the number of terminals within each LAN."

2. "Which LANs have database processors?"

TABLE 3

Selected Hardware Entities and Attributes

Entities

Processing system Concentrators

Secondary storage Terminals

Communications system LAN I/O peripherals

Attributes

Type Features

Model Description

Model nurber Docu. references

Serial number Usage by site

Mfger's number Cost

Source Maintenance activity

Recommended software entities and attributes (SPLICE 81) are

summarized in Table 4. One possible logical structure for software,

transaction, and report entities is given in Figure 18. The advantage

61

U IO

lip;

*- T1rnALI

Frqgars 17: Locical Structure o4- Hari1waZe R~so'3:=es
(ta (&ller. 9-: ili 982])

Figure 18: Logical Structure for SofTtirua, Transactions,
a r. Report Resourcos

62

TABLE 4

Selected Software Entities and Attributes

Entities

Operating system

Operational support system

Environmental system

Application software

Attributes

Program-id

Revision number

Revision date

Date compiled

Type of compiler

Patch level

Change level

License

Date released

Product number

Source

Features

Documentation

Usage

Cost

Maintenance activity

63

of this kind of structure is that one can extract data flow information

from it relatively easily. Thus a query to the effect of "construct a

data flow analysis (input files, modules/transactions, output files,

reports) for the APADE system" should be reasonable to implement.

Inclusion of these resources in the DDS contributes greatly to the

viability of the DDS as a systems analysis and design tool.

Other documents besides reports can be catalogued in the DDS as

well. Table 5 summarizes entities and attributes for various kinds of

documents [SPLICE 81].

Personnel is another resource which can be included in the DDS.

Information about users, account numbers and access authority might be

germane as well as data about programmers, analysts, DBAs and

programs/systems which they are responsible for. Relationships between

users and other resources can occur at many levels so there is no

attempt to provide any sample structure here. This, again, will be a

function of the intended usage of the DDS.

TABLE 5

Document/Report Attributes

Name Source

Number Feature

Product number Description

Release date Quantity

Revision number Cost

DISTRIBUTION OF THE DDS

Strongly associated with the issue of logical structure is how to

distribute the DDS within the network. The DDS itself consists of one

64

or more databases and so is subject to distribution just like any other

database. It should be noted here that, in general, distribution can

occur within, as well as across, local area networks. with SPLICE,

intra-LAN distribution will be minimized since database management is to

be centralized within each LAN [Schneidewind 82]. Databases will be

distributed across LANs, however, and the DOS may be as well.

The major problem in connection with distributing databases and, in

particular with distributing the dictionary/directory, is what degree of

distribution to implement. Two distinct approaches are generally

considered:

1. dividing a database into partitions and locating the

partitions at the nodes where they are most likely to be used,

or

2. replicating databases and putting copies at the nodes where

they are needed.

Partitioning saves secondary storage usage but increases

access/communication costs if the partition is suboptimal (i.e., if the

demand and supply nodes are frequently different). Replication insures

access efficiency but at the cost of increased secondary storage usage.

Furthermore, replication introduces the problem of multiple update

consistency.

Consider, for example, the hypothetical situation where a supply

officer at some NSC has run out of a particular part and wants to order

100 more. He might issue the appropriate query equivalent to "Find all

SITES where PART-NO-'01037AX' and QTY-ON-HAND 100". The DDS in

conjunction with the data management module must respond to this

65

request. The efficiency of this response depends on how the DDS is

distributed.

One possibility might be that each LAN has its own

dictionary/directory (D/D) in which case it would be necessary to poll

each LAN to see whether it satisfied the query. This is the fully

partitioned case and it is clearly costly in terms of communications

traffic when the local D/D is unable to satisfy a query.

The fully replicated case would involve a copy of a global D/D

being stored within each LAN. In this situation, the query could be

satisfied without using the Defense Data Network at all. The problem,

of course, is that every change to the D/D must be reflected at each LAN

which is again a conmunication-intensive operation.

A hybrid solution is to store global D/Ds at a very few nodes.

Whenever the local D/D cannot provide the information requested, it

queries the global D/D at the most proximate site. The question then

becomes "where to locate the global D/D copies?" With regard to the

kind of query posited in this example, a good choice for locating the

global DDS in the SPLICE system might be the Inventory Control Points

located at ASO Philadelphia and SPCC Mechanicsburg.

Because of the rather severe tradeoffs involved with a strictly

partitioned or strictly replicated approach, some hybrid implementation

is most likely. As a result, a distributed DDS will contain both global

and local components. This argues for a global DDS logical design which

is conducive to partitioning into local components as criteria for this

partitioning (perhaps based on functional usage) are determined.

66

ENVIRONMENTAL DEPENDENCY

Environmental dependency refers to the level of integration of the

DDS with other functional modules of the SPLICE system. Earlier, we

mentioned that even though the scope of the DDS transcends data

management, it is still appropriate to position the DDS within the data

management functional module. The next problem to address is the degree

to which the DDS should be coupled to a DBMS.

There are three relationships which can exist between a DDS and

DBMS [Allen et al. 82]: independent, DBMS-application, and embedded.

The independent approach refers to a DDS which does not rely at all upon

a particular DBMS. The databases which comprise the DDS are not created

or manipulated by a DBMS and interfaces with existing DBM's are

generally minimal. The advantage is that the DDS can be used in

environments where many different DBMS's operate. The disadvantage is

that software capabilities must be provided to perform the data

manipulation operations which would otherwise be subsumed by the DBMS.

The DBMS-application approach implies that the DDS is just another

database created and manipulated by a particular DBMS. Data

manipulation operations are performed by the DBMS but the DBMS D/D and

the DDS are separate entities. The advantage is that the full range of

DBMS data manipulation features (query processing, report generation,

etc.) are available for DDS purposes. The disadvantage is that the DDS

is dependent upon a particular DBMS environment.

The embedded approach implies that the DDS is an integral component

of the DBMS. All data-directed operations are channeled through the D/D

and no other D/Ds exist. The trend in recent years has been towards

this fully integrated approach in centralized environments. The

67

disadvantage of integrated DDSs is that they are limited by DBMS vendor

capabilities which may not be sufficient for user needs.

The approach likely to be most suitable for the SPLICE DDS is the

DBMS-application approach. A totally independent DDS has certain

desirable properties but requires data manipulation capabilities

equivalent to those of a DBMS. This would entail a large amount of

software development to provide facilities already existing in available

DBMS packages.

The fully integrated DOS is also appealing but current integrated

systems are designed for centralized environments and are strongly

data-oriented rather than resource-oriented. It is not clear whether

they can be adapted to accomodate the expanded scope of the SPLICE DDS.

The advantage of the DBMS-application approach is that a customized

D/D can be designed and implemented (perhaps integrating logical

structures similar to those shown in Figures 16, 17, and 18) which meets

the special needs of the SPLICE information resource environment.

Furthermore, conventional DBMS features like data description languages,

query processors, report generators, and security mechanisms provide

ready-made data description, manipulation, and control capabilities for

managing the DDS. The primary development effort in this scenario then

is one of database design rather than software development.

The major drawback of a DBMS-application DDS is that it might

adversely affect the flexibility of its distribution. If the DDS is

tied to a particular DBMS, it will not be possible to put any segment or

copy of the DDS at a node which does not have the DBMS as well. This

can be overcome either by requiring nodes to have uniform DBMS

68

capabilities or by centralizing a global D/D with few local components.

If neither of these alternatives is feasible within SPLICE, then it may

be necessary to reconsider the DDS as DBMS-independent instead.

COMPUTER ARCHITECTURE

Consistent with the approach described earlier of starting with the

logical design of the system and using it to determine the physical

implementation, the design characteristics of LANOS determine the

computer architecture of the system and not vice versa. Therefore, in

order to support a bus-oriented LAN, the following computer architecture

is needed for each installation of the LAN:

A. Local Area Networks

-Topology- Bus

-Access Method: Token bus to allow predictable response times

-Speed: 50M bits/sec. (Hyperchannel, (NSC82))

-Message transmission and acknowledgement

-CRC error checking

B. Minicomputers

-Number: 3 per LAN installation

-Word length: 32 bits

-Logical address space: 24 bits - 16M bytes

-Physical address space: 512K bytes/memory bank

-RAM: Minimum of one S12K byte bank to maximum of 32 per

processor

-Cycle time: 200 no.

-Addressing modes: Direct

69

t

Base register: For program relocation

Indirect: For subroutine call return

Indexed: For table manipulation

-Stack for preservation of context switch data

-16 general purpose registers for PCR, IR, indexing, base

registers, indirect addressing and arithmetic

-DMA channels associated with LAN adaptor/buffers operated at

SM bytes/sec

-Disk controllers and disk unites operating at 5M bytes/sec

-Instruction format:

memory

Oeration ddreS Bank Byte
Crnda Mode AddreM& Address

6 bits L 2 bits 1-5 bits I 19 bits I

-Vector interrupt: To minimize I/0 overhead and provide for

fast context switch and for servicing interrupts generated

from interprocessor comunication (start of message input)

and completion of message output and for responding to disk

completion events. (See Figure 19 for vector interrupt

table).

C. microcomputers

-Several MC68000 class microcomputers for each LAN to support

resource allocation and communication tasks

-With a bus operating at a maximum speed of 50m bits/sec (SM

bytes/sec), a memory cycle time of 200 na., a disk channel

70

speed of 5M bytes/sec, and a DMA speed of SM bytes/sec, were

chosen to keep pace with the bus speed.

CONCLUSIONS AND RECOMMENDATIONS

Operating System

As stated in the Operating System Design objectives section, the

objectives of the LANOS are two fold: (1) fast processing and (2)

reduction of operating system overhead, It is believed that the design

accomplishes these objectives for the following reasons:

*There is minimua use of the Executive in each processor. That is,

the functional modules accomplish their assigned tasks

autonomously, without constant need to coordinate with the

Executive. In addition, each functional module does as much of

the transaction processing as possible when it has possession of a

transaction message, thus reducing the amount of functional module

interaction and consequent message exchange.

OThe message-based interprocess and interprocessor communication

system, working on a software and hardware interrupt basis,

provides an asynchronous message communication system which

eliminates the message setup time required in many operating

systems which employ links, such as in DEMOS (Baskett 77).

*Many critical resources are dedicated, thus eliminating resource

allocation and deallocation time.

*Multiple computers are used for the major functional modules, thus

allowing for a high degree of parallelism.

*A high speed bus, with matching memory, DMA and disk channel

speeds, provide the hardware speed necessary to accomplish and

desired objectives.

71

Minicomputer Bus

Vector Intarrupt. inst.
(like RST)

OP Addr. Bank Addr. Memory Addr. *
Code Mode 5 bits 19 bits

6 bits 2 bits

Hardware Interrupts I/O Completion To Interrupt
I Processing

J .- '.- •Routines
Disk

I ~ ~~~Tape 4

Supv. Call Printer ---------_- - -

Inst. Card Reader--4

Software Interrupts

Svc-

Table of Jump Instructions

First memory bank locations (512 K bytes)

Fiqure 19 . . Vector Interrupt Table

72

The disadvantages of the design are possible underutilization

of resources as a result of the dedication of resources policy.

Also, there are few examples of successful distributed network

operating systems.

The proposed design is, to a large extent, untested. A good deal of

simulation will have to be performed in order to test various design

assumptions and, in particular, to check the performance which can be

achieved with regard to effective bus transfer rate, message transfer

time and user response time.

As far as future expansion and enhanced use of the system is

concerned, each processor can be expanded with respect to RAM and disk

capacity, thus allowing faster functional module execution by providing

more buffer and work space per module and increased throughput by

providing more storage capacity to support additional communicating

functional module pairs. Additional processors could be added to the

bus system for performing multiprocessing of the sub-modules of a given

functional module or to provide additional functional modules for

supporting new applications. The primary limitation on future expansion

capabilities will be the effective bus speed which can be sustained as

processors are expanded and added to the system.

Dictionary/Directory System

Our objective has been to motivate and substantiate the need for

information resource management within the SPLICE system and suggest a

means for achieving it. This need is seen as existing on at least two

levels:

1. the operating system, the essential function of which is to

manage and allocate system resources, and

73

2. the end-user, who needs to know what information resources

exist, where they are located, and how to access them.

A dictionary/directory system is suggested as a vehicle for satisfying

both levels although most of the previous discussion was aimed at

end-user considerations. The DDS should be resource-oriented rather

than just data-oriented if it is to satisfy the above requirements.

Since the DS consists of databases, it is nevertheless appropriate to

place it under the aegis of the data management functional module.

Several logical structures were discussed as being relevant to the

SPLICE DOS design and it was suggested that the DDS be implemented as a

DDS-application database in order to reduce redundant software

development.

This study leaves several questions and issues to be explored

further:

1. Requirements analysis: this involves a more detailed

specification of the kinds of information that should be in

the DDS (for both the OS and end-users) and the usage which

the DS will receive; at the end-user level, this may require

the determination of resource description standards;

2. DDS design: From the requirements analysis, it will be

necessary to devise DDS schemes and determine the local and

global components of the database(s);

3. DDS interface: given a DDS design, the interfaces to other

SPLICE functional modules must be determined; this is

particularly critical at the OS level;

74

4. Specification of the database/file server: given the role of

a DDS, it will be necessary to continue developing

specifications for the data management module; in particular,

this must be done for the database/file server.

75

REFERENCES

[Akkoyunlu 74] Akkoyunlu, Eralp, "Interprocess Communication Facilities
for Network Operating Systems", Computer, Vol. 7, No. 6, June 1974,
pp. 46-55.

(Allen 821 Allen, F. W., Loomis, M. E. S. and Mannino, M. W.,"The
Integrated Dictionary/Directory System", Computing Surveys, June 1982.

[Bachman 78] Bachman, Charles and Mike Canepa, "The Session Control
Layer of an Open System Interconnection", Proceedings of Fall COMPCON,
September 1978, pp. 150-156.

[Bartlett 78] Bartlett, Joel F., "A Non-Stop* Operating System",
Proceedings of the Eleventh International Conference on System
Sciences Vol. III, 1978, pp. 103-117.

[Baskett 77] Baskett, Forest, et al., "Task Communication in DEMOS",
Proceedings of the Sixth Symposium on Operating Systems Principles,
ACM Operating Systems Review, Vol. 11, No. 5, November 1977,
pp. 23-31.

[Boebert 781 Boebert, W.E., et al., "Decentralized Executive Control in
Distributed Computer Systems", Proceedings of COMPSAC 78, IEEE
Computer Society, November 1978, pp. 254-258.

(Calingaert 821 Calingaert, Peter, Operating System Elements,
Prentice-Hall, 1982.

[Cheriton 79] Cheriton, David R., "Thoth, a Portable Real-Time
Operating System", Communications of the ACM, Vol. 22, No. 2, February
1979, pp. 105-115.

[Coffman 71] Coffman, E. G., Jr., M. Elphick and A. Shoshani, "System
Deadlocks", Computing Surveys, Vol. 13, No. 2, June 1971, pp. 67-78.

[Curtice 81] Curtice, R. M."Data Dictionaries: An Assessment of
Current Practice and Problems", VLDB #7 Proceedings, 1981,
pp. 564-570.

[Deitel 821 Deitel, H. M., An Introduction to Operating Systems,
Addison-Wesley, 1982.

[Donnelley 79] Donnelley, Jed, "Components of a Network Operating
System", 4th Conference on Local Computer Networks, IEEE Computer
Society, October 1979, pp. 1-12.

[Guillemont 82] Guillemont, Mare, "The Chorus Distributed Operating
System: Design and Implementation", Local Computer Networks, Ravasio,
et al., (eds.), North-Holland Publishing Co., pp. 207-223.

*"Non-StopO is a trademark of Tandem Computers, Inc.

76

[Jensen 81] Jensen, Douglas E. "Dstributed Control, Distributed
Systems - Architecture and Implementation", B.W. Tampson ed.) Springer
- Verlag, 1981, pp. 175-190.

[Jones 79] Jones, Anita K., et al., "StarOS a Multiprocessor Operating
System for the Support of Task Forces", Proceedings of the Seventh
Symposium on Operating Systems Principles, ACM, December 1979, pp.
117-127.

(Kuhns 79] Kuhns, Richard C. and Marc C. Shoquist, "A Serial Data Bus
System for Local Processing Networks", Digest of Papers, Spring 79
COMPCON, February 1979, pp. 266-271.

[Metcalfe 76] Metcalfe, Robert M. and David R. Boggs, "Ethernet:
Distributed Packet Switching for Local Computer Networks",
Comumnications of the ACM, Vol. 19, No. 7., July 1976, pp. 395-404.

(Moore 82] Moore, Lee C., et al., "Design and Implementation of a Local
Network Message Passing Protocol", 7th Conference on Local Computer
Networks, Computer Society Press, October 1982, pp. 70-74.

(Nadkarni 83] Nadkarni, Ashok V., et al., "Performance of Some Local
Area Network Technologies", Digest of Papers, Spring COMPCON, IEEE
Computer Society, March 1983, pp. 137-141.

TM(NSC82] Network Systems Corporation, HYPERchannel/T, Systems
Description Manual, January 1982.

(Ousterhout 80] Ousterhout, John K. et al., "Medusa - An Experiment
in Distributed Operating System Structure", Communications of the ACM,
Vol. 23, No. 2, February 1980, pp. 92-104.

(Parker 831 Parker, Richard and Sydney F. Shapiro, "Untangling Local
Area Networks", Computer Design, March 1983, pp. 159-172.

(Pevovar 82] Pevovar, Ed and Brian McGann, "Sorting through the LAN
Morass", Digital Design, Vol. 12, No. 11, November 1982, pp. 54-62.

[Saltzer 811 Saltzer J.H., et al., "Why a Ring?", Seventh Data
Communications Symposium, ACMSIGCOMM Computer Communications Review,
Vol. 11, No. 14, October 1981, pp. 211-217.

[Saltzer 82] Saltzer, Jerome H., "On the Naming and Birding of Network
Destinations", Local Computer Networks, Ravasio, Piercarlo, et al.
(eds.), North-Holland Publishing Co., 1982, pp. 311-317.

(Salwan 83) Salven, Howard C. "In Praise of Ring Architecture for Local
Area Networks", Computer Design, March 1983, pp. 183-192.

(Schneidewind 821 Schneidewind, N., "Functional Design of a Local Area
Network for the SPLICE Environment", NPS-54-82-003, Naval Postgraduate
School, Monterey, CA, December 1982.

77

(Schneidewind 831 Schneidewind, Norman F., "Functional Approach to the
Design of a Local Network: A Naval Logistics System Example", Digest
of Papers, Spring Compcon 83, IEEE Computer Society, March 1983,
pp. 197-202.

[Shoch 781 Shock, J.F., "Internetwork Naming, Addressing and Routing",
Proceedings of COMPCON Fall 78, IEEE Computer Society, pp. 72-79.

[Solomon 791 Solomon, Marvin H. and Raphael A. Finkel, "The Roscoe
Distributed Operating SysteL", Proceedings of the Seventh Symposium on
Operating Systems Principles, ACM, December 1979, pp. 108-114.

(SPLICE 81] Fleet Material Office, Department of the Navy, Doc. No.
F94LO-9260-001-SS-SUO1, SPLICE SYSTEM SPECIFICATIONS, 2 February 1981.

[Stuck 831 Stuck, Bart W., "Calculating the Maximum Mean Data Rate in
Local Area Networks", COMPUTER, Vol. 16, No. 5, May 1983, pp. 72-76.

[Teichroew 77] Teichroew, D. and Hershey, E., "PSL/PSA: A Computer-
Aided Technique for Structured Documentation and Analysis of
Information Processing Systems", IEEE Transactions on Software
Engineering, Vol. SE3-No. 1, January 1977, pp. 41-48.

[Tropper 81] Tropper, Carl, Local Computer Network Technologies,
Academic Press, pp. 7-18.

(Walden 72] Walden, David C., "A System for Interprocess Communication
in a Resource Sharing Computer Network", Communication of the ACM,
Vol. 15, No. 4, April 1972, pp. 221-230.

[Watson 81a) Watson, Richard W. "Identifers (Naming) in Distributed
Systems", Distributed System - Architecture and Implementation B.W.
Lampson (ed.), Springer - Verlag, 1981, pp. 191-210.

[Watson 81b] Watson, Richard W., "Distributed System-Architecture
Model", Ibid, pp. 10-43.

[Wood 821 Wood, B.J. et al., "A Local-Area Network Architecture Based
on Message-Passing Operating System Concepts", 7th Conference on Local
Computer Networks, Computer Society Press, October 1982, pp. 59-69.

[Wulf 74] Wulf, W., et al., "HYDRA: The Kernel of a Multiprocessor
Operating System", Communications of the ACM, Vol. 17, No. 6, June
1974, pp. 337-344.

[Yuen 721 Yuen, M.L.T., et al., "Traffic Flow in a Distributed Loop
Switching System", Jerome Fox (ed.), Proceedings of the Symposium on
Computer Communications Networks and Teletraffic, Polytechic Press of
the Polytechnic Institute of Brooklyn, 1972, pp. 29-58.

78

I

DISTRIBUTION LIST

Number of Copies

Lieutenant Commander Steve Bristow

Navy Management System Support Office

NAS
Norfolk, VA 23464

LCDR Ted Case
Fleet Material Support Office
Code 94L
Mechanicsburg, PA 17055

Professor Dan Dolk
Code 54Dk
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Commander Dana Fuller
Commander, Naval Supply Systems Command

Code 0415A
Washington, D.C. 20376

Dr. Harvey A. Freeman
Architecture Technology
P.O. Box 24344
Minneapolis, MN 55424

Captain Chuck Gibfried
COMNAVAIRPAC
Code 40
NAS
San Diego, CA 92135

Colonel Heidi B. Heiden
DDN Program Manager
Defense Communications Agency

Attn: DDN PMO (Code B615)
8th & S. Courthouse Roads
Washington, D.C. 20305

Professor Carl Jones
Code 54Js
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Ms. Tan Tahn Joo
Dy Head, Software Engineering Department

Information Engineering Centre

System Computer Organisation
Ministry of Defense
Minden Road, Singapore 1024

79

Number of Copies

Professor Jack LaPatra
Code 54Lp
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Professor Norm Lyons
Code 54Lb
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Mr. Steve Oxman
c/o SHAPE Technical Center
United States Research
and Development Coordinating Officer
APO NY 09159

Professor Norman F. Schneidewind 30
Code 54Ss
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Ms. Mary Willoughby
P.O. Box 94
Mendocino, CA 95460

Administrative Sciences Department
Code 54
Naval Postgraduate School
Monterey, CA 93943

Computer Center Library
Code 0141
Naval Postgraduate School
Monterey, CA 93943

Computer Science Department
Code 52
Naval Postgraduate School
Monterey, CA 93943

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 23314

Knox Library 4
Code 0142
Naval Postgraduate School
Monterey, CA 93943

so

Number of Copies

Office of Research Administration 1
Code 012A
Naval Postgraduate School

* Monterey, CA 93943

